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We present a method for the derivation of the generating function and computa- 
tion of critical exponents for several cluster models (staircase, bar-graph, and 
directed column-convex polygons, as well as partially directed self-avoiding 
walks), starting with nonlinear functional equations for the generating function. 
By linearizing these equations, we first give a derivation of the generating func- 
tions. The nonlinear equations are further used to compute the thermodynamic 
critical exponents via a formal perturbation ansatz. Alternatively, taking the 
continuum limit leads to nonlinear differential equations, from which one can 
extract the scaling function. We find that all the above models are in the same 
universality class with exponents y,,= -1/2, 7, = -1/3, and ~b = 2/3. All models 
have as their scaling function the logarithmic derivative of the Airy function. 

KEY WORDS: Functional equations; cluster models; polygons; critical 
exponents; scaling functions; nonlinear differential equation. 

1. I N T R O D U C T I O N  

Steady progress  is be ing  made  in the ma thema t i ca l  analysis  of cer ta in  
geometr ic  cluster  models .  These objects can  be cons idered  as c o m b i n a t o r i a l  
objects to be enumera t ed ,  o r  as models  of  physical  systems such as vesicles 
or polymers.  A select ion of these models  is i l lustrated in Fig. 1. T rad i -  
t ional ly  on ly  the square  latt ice objects have been studied,  a l t hough  the 
genera l iza t ion  to o ther  lattices is s t ra ightforward.  Combina to r i a l i s t s  have 
general ly s tudied the po lygon  models  an d  call these objects  po lyominoes .  
A short  review of the his tory of the so lu t ions  of the var ious  types of 
po lyominoes  can  be found  in Delest.  (t~ 
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Fig. 1. Typical configurations for a selection of directed geometric cluster models. 
(a) staircase polygons, (b) directed column-convex polygons, (c)column-convex polygons, 
(d) bar-graph polygons, (e) alternating bar-graph polygons, and (f) ZL walks. 

The two-variable generating functions for the area and perimeter 
(polygon models), or length and interactions (walk models), have been 
solved by a variety of methods. It is frequently possible to prove a bijection 
between words of an algebraic language and the combinatorial objects of 
interest, t2~ an idea going back to Schiitzenberger. (3J An alternative method 
of solution involving recurrence relations goes back to Temperley. t4~ This 
method has been subsequently extended to solve several more models. ~5-8~ 
Some of the walk models can also be partially solved using transfer matrix 
techniques. 191 

All these models possess the characteristic feature that their single- 
variable generating functions are algebraic, while the two-variable generat- 
ing functions are expressed in terms of q-series. These are generally q-Bessel 
functions ~0 ,~  or q-hypergeometric functions. ~2~ The q-series solutions to 
this class of models have been obtained by several techniques. A method 
developed by Temperley ~4~ leads to a recurrence relation which is solved by 
a q-series, tS~ The recurrence relation is directly related to a linear functional 
equation which can also be solved by q-series methods, c8~ In algebraic 
language theory the q-series appear as q-extensions or q-grammars, t~3) 

We will use the language and notation of the polygon models in what 
follows, but mutatis mutandis the same results apply for the walk models. 

The q-series solutions are satisfactory representations of the com- 
binatorial problem in that the numbers of configurations of a given length 
and area can be computed in polynomial time (compared with the 
exponential time required for explicit enumeration). However, it is still not 
possible to easily extract the asymptotic behavior of the generating function 
from the q-series. 
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The principal purpose of this paper is to "solve" this asymptotic 
problem without a direct assault on the q-functions. If only the asymptotics 
of the generating function is required, then a direct assault on the 
q-functions is a wasted effort, as a large part of the leading asymptotic 
function cancels and only the subdominant factors contribute to the 
generating function. 

We approach the asymptotic problem using two different methods: 
(i) A formal perturbation theory. This method has the advantage of giving 
several critical exponents for the lattice models. For this, the asymptotic 
form has to be assumed in order to identify the exponents. (i i)Nonlinear 
differential equations. This method has the advantage of deriving the 
asymptotic function and hence the critical exponents exactly; however, it 
only applies to the semicontinuous version of the lattice model. If one 
accepts that the continuous version of a model has the same asymptotic 
behavior as the lattice model, then of course one has the lattice exponents 
as well. 

We now outline the general form of the asymptotic behavior of this 
class of models (for more details see Brak et  al.(14)). The principal object of 
study is the area-perimeter generating function G(y, q), defined as 

where 

G(y, q)= ~ A,,(y) qm = ~" p~_,,(q) y,, 
r t l  = l n =  2 

(1.1) 

Am(y)= ~ c,,Z .... Y , Pz,,(q) = ~ c,,,2 ..... q (1.2) 
n = 2 m = 1 

2n is the number of polygons of the required type with perimeter 2n and c m 
and area m. Thus, Am(y) and P2,,(q) are the generating functions for 
polygons with a fixed area, respectively perimeter. 

If we consider q as a parameter and y the variable, then G is a series 
in y with coefficients P2,,(q). If G converges, then its radius of convergence 
Yc(q) is given by 

yc(q)= lim P2,,(q) -~/" (1.3) 
n ~  o 3  

It is usually straightforward to prove the existence of y,.(q) using super- or 
submultiplicative inequalities. 1~5,6~ For the polygon models a plot of the 
radius of convergence Yc(q) as a function of q is of the general form shown 
in Fig. 2. Alternatively one can fix y and consider G as a function of q with 
radius of. convergence qc(Y). Then for polygon models the generating 
function is singular along the line q = 1 between y = 0  and some point 



704 Prellberg and Brak 

8.. 
Tricritical Point 

Yt ~ (l'Yt) 

q - Area variable 1 

Fig. 2. The schematic form of the radius of convergence of the area-perimeter generating 
function for the polygon models. 

Y, = Yc(1). For  other models  this line may  be more  complicated. The point 
(q,, y,)  is an example of a "tricritical" point 1~4~ where q,=qc(Y,). For  
polygon models q, = 1. Elucidating the singularity structure of the generating 
function a round this point is the principal interest of this paper. 

When q = 1, G only generates the polygons by perimeter. For  all the 
above models G(y, 1) is an algebraic function and hence has a branch 
point with exponent  7, at y, ,  that is, 

G(y, 1 ) ~ A ( y , - y )  -~, y - * y ?  (1.4) 

For  y= y,, the generating function has a branch point-like singularity in q 
at q,, but with a different exponent  7 ,  where ~,, is defined through 

G ( y , , q ) ~ B ( q , - q )  ~", q-*q? (1.5) 

These two different asymptot ic  behaviors can be combined into a scaling 
function f ,  where 

G(y, q) ~ ( q , -  q)-~" f (  { q , -  q} - r  { y , -  y})  (1.6) 

with 

{~ -~'" if z --* oo 
f(z) ~ (1.7) 

if z - * O  + 

where ~ is called the tricritical crossover exponent  and 7, = ~,/4. 
What  exactly does (1.6) mean? The right-hand side is the asymptot ic  

behavior  of G as q--'q7 but is uniform in the variable y in some 
neighborhood of y,.  The uniformity is essential, as it enables one to inter- 
change the order of the two limits q - *  q ,  and y - *  Y7 and hence obtain 
the two different asymptot ic  behaviors (1.4) and (1.5). This uniformity will 
be explicitly shown for the staircase model. 
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One further behavior of G is of interest: the shape of the yc(q) curve 
in the neighborhood of the tricritical point. For these polygon models, 
unlike some walk models, it is just a straight line for yc(q)<  y,; however, 
for Yc(q) > Y, it is expected that 

Yc(q) - Y, ~ ( q , -  q)'/r q ~ q?  (1.8) 

with a shape exponent ~ which is related to the crossover exponent 06 via 
~p = 1/~l '4~ 

Considerable success at calculating the critical exponents was achieved 
by solving a semicontinuous model related to the lattice model. In par- 
ticular, the ZL walk model, where the configurations are alternating 
partially directed self-avoiding walks, 116~ has been solved on the lattice Isl 
and in semicontinuum. ~16~ The semicontinuous model is exactly the same as 
the lattice model except that the length of the vertical steps of the walk can 
take any positive real value instead of being constrained to integer values. 
The exponents for the semicontinuous model are easily computed for ZL 
walks, as the solution is expressible in terms of Bessel functions whose 
asymptotics are well documented. For the lattice model the situation is 
quite different. Here the solution is expressible in terms of q-Besset func- 
tions, and very little is known about their asymptotics. Because of this 
problem we have concentrated on obtaining the asymptotics along a route 
that does not depend on the q-Bessel functions. By using a formal pertur- 
bation expansion it has been shown in the case of IPDSAW ~8~ that the 
exponents for the lattice model and the semicontinuous model are exact ly  
the same. Furthermore, renormalization group arguments show that a 
lattice model and its semicontinuous version should have the same asymp- 
totic behavior. Accepting this argument means that it is sufficient to find 
the asymptotic behavior of the semicontinuous model to have it for the 
lattice model as well. 

It has also been shown for the ZL walk model that the semicontinuous 
model can be obtained from the lattice model by taking the continuum 
limit, cs~ The continuum limit for this model corresponds to letting the 
lattice spacing in the vertical direction tend to zero while the "physical" 
height is held fixed. In this limit the q-Bessel functions of the lattice model 
become the Bessel functions of the semicontinuous model. ~8~ In this sense 
one can think of the lattice model as the q-extension of the semicontinuous 
model. 

The idea of using the continuum limit to compute the critical 
exponents is extended in this paper. The essential new ingredient of this 
paper is the starting point. Previous solutions have been obtained via 
recurrence relations or equivalently via linear functional equations. In this 
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paper we use nonlinear functional equations. This form of the functional 
equation is more suited to the limit q ~ q,. 

We will show that the generating function for all the models in this class 
satisfies a quadratically nonlinear functional equation, or set of coupled 
nonlinear functional equations. All the nonlinear functional equations 
obtained in this paper are solved by a linearizing transformation. The linear 
functional equation can then by solved with a q-series Ansatz. This gives a 
new and elegant derivation of results obtained elsewhere. (z2) 

Starting from the nonlinear functional equation, we take the continuum 
limit. This gives rise to a nonlinear differential equation or a coupled set of 
nonlinear differential equations. Solving the differential equation gives the 
solution to the semicontinuous version. For the all the models we study in 
this paper the differential equation is a generalized Riccati equation, c~7) 
A kth-order generalized Riccati equation can be linearized by a simple 
transformation and always leads to a solution of the form 

Zf=l ciw;(t) 
g ( t ) -  k Y~i=l ciwi(t) (1.9) 

where wi(t) are solutions of the iinearized equation (the prime denotes 
differentiation). Even though the column-convex model does not appear 
to be of an exact Riccati form (1.9), (~SJ it is amenable to the methods 
presented here. 

Having obtained the nonlinear differential equation, one has two 
immediate methods to obtain the asymptotic behavior. Either one attempts 
to solve the equation explicitly and extracts the asymptotics from the 
resulting solutions, or one works directly with the nonlinear differential 
equation. For the simpler models we will use both methods, while for the 
more complex models we use only the latter method. 

The asymptotics can be obtained directly from the differential equation 
by using the method of dominant balance/19) We show that asymptotically 
the nonlinear differential equations for all the models have a generalized 
homogeneous or scaling solution. The scaling function [i.e., f (z)  of (1.7)] 
satisfies a Riccati equation of the form 

~=cf2-bz (1.10) 

where b and c are model-dependent constants. This equation can be 
linearized by the transformation 

1 dh 
f ( z ) :  (1.11) 

ch(z) dz 
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if h(z) satisfies the linear equation 

d2h 
(17_ 2 b e z h ( z ) = O  (1.12) 

This is the Airy equation. Thus, after changing back to the original 
variables and inserting initial conditions, we find that asymptotically all the 
area perimeter generating functions have the scaling function 

{ b ,~,/3 Ai,({cb},/3 z) 
f(z) = + \ ~ 1  Ai({cb} I/3 Z) (1.13) 

and the critical exponents are 

y,,-- -�89 y,-- -~, ~b=~,  ~--~ (1.14) 

2. M O D E L S  

The particular models we consider are subsets of column-convex 
polygons. A polygon is called column-convex if the intersection with any 
vertical line is convex, i.e., the intersection consists of only one connected 
line segment. Equivalently, column-convex polygons are generated by two 
mutually self-avoiding partially directed self-avoiding walks with common 
start and end points. (Partially directed walks are self-avoiding walks in 
which no steps into the negative x direction are allowed.) By putting 
several restrictions on these walks, we can define various models (see 
Fig. 1). 

If the lower and upper walks are fully directed (i.e., only steps into the 
positive x and y directions are allowed), we get the model of staircase 
polygons S (Fig. la). 

If the upper walk is partially directed and the lower walk is fully 
directed, we get the model of directed column-convex polygons D (Fig. lb). 
If both walks are partially directed without restrictions, we get the model 
of column-convex polygons (Fig. lc). 

If the upper walk is partially directed and the lower walk is restricted 
to be horizontal, we get the model of bar-graph polygons B (Fig. ld). 
A particularly simple subset is given by the additional restriction that the 
upper walk reverse direction after every horizontal step, leading to alter- 
nathTg bar-graph polygons R (Fig. le). 

For each of these models, we extend the definition of the generating 
function from the introduction as follows. Let c',',~'", be the number of 
polygons with 2n,. horizontal steps and 2ny vertical steps which enclose an 
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area of size m. (Clearly the numbers of horizontal and vertical steps are 
even.) We then define the polygon generating function G(x, y, q) to be 

G(x, y, q) =- ~ c;;~'"~x"~y'q '' (2.1) 

We further consider models of interacting partially directed self-avoid- 
ing walks (IPDSAW) which are enumerated with respect to their length 
and the number of nearest-neighbor bonds. A particular subset is given by 
walks which reverse direction after every horizontal step (ZL); see Fig. lf. 

Let c',',~ ''',~ be the number of walks with nx horizontal and ny vertical 
steps and m the number of nearest-neighbor bonds. Then we define the 
walk generating function 

H(x, y, o~) = ~ c~""*x"'y"."w"' (2.2) 

3. F U N C T I O N A L  E Q U A T I O N S  

The technique for solving these models is to use a geometrical parti- 
tion of the set of all polygons into disjoint subsets. These subsets are 
chosen such that they enable one to give construction rules that can be 
transformed into equations for the corresponding generating functions. 
A related method for the derivation of functional equations based on the 
theory of algebraic languages has been developed in refs. 20 and 21. 

These equations can then in principle be used to solve for the generat- 
ing function. As we shall see, one can also extract information about the 
singularity structure of the generating function directly from the functional 
equations. 

We start this section by presenting an example with a particularly 
simple partition to illustrate the method. In general, the partition will be 
more complicated. The partitions of all of the following models have, 
however, one feature in common with this example. One set of the partition 
will be a set P~ of "inflated" polygons, i.e., polygons which are generated 
from the set P of all polygons by increasing the height of each column by 
one (replacement of x by qx) and thereby increasing the number of vertical 
perimeter bonds by 2 (multiplication by y), leading to the equation 

P~(x, y, q)= P(qx, y, q)y (3.1) 

To start with the example, assume that we would like to describe the 
generating function C(x, y, q) for the set C of all columns of width 1. In an 
abuse of notation, we will use the same symbol for a set and its associated 
generating function. A partition of the set C of all columns into two sets 
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C(z)  C(qz)y  qxy 

Fig. 3. The diagrammatic form of the functional equation for single columns together with 
its generating function representation. 

is given by collecting all columns of height larger than 1 into the set C~, 
leaving the set C2 = C \ C ~ ,  which contains only the unit square. The set Cl 
can easily be seen to be constructed from the set of all columns by increas- 
ing their height by one area element. This is shown symbolically in Fig. 3. 

In terms of generating functions, we can write this as 

Cl(x, y, q)= C(qx, y, q) y (3.2) 

The generating function for C2 is simply 

C2(x  , y,  q) = qxy (3.3) 

and summing up C = CI + C2 leads to a functional equation for C, 

C(x, y, q) = C(qx, y, q) y + qxy (3.4) 

which can be immediately solved by iteration to give 

C(x, y, q)= qxy (3.5) 
1 - qy 

3.1. Bar -Graph  Polygons 

Our next example will be bar-graph polygons, that is, column-convex 
polygons with a horizontal lower boundary. We can partition the set B of 
all bar-graph polygons by first splitting off the set Bl of inflated bar-graph 
polygons. If B(x, y, q) denotes the generating function for the set of all 
bar-graph polygons, then the generating function B~(x, y, q) of the subset 
Bl is given as 

B,(x, y, q)= B(qx, y, q) y (3.6) 
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Alternating Bar-graph Polygons 

R(z) R(qz)lJ 

Bar-graph Polygons 

B(~c) B(qx)y 

+ + l  

R(qz)qzR(z) qxy 

+ + 

B(qx)qxB(x) B(qx)qxy 

+ . + J - - - ]  

qxy qxB(x) 

Fig. 4. The diagrammatic form of the functional equations for bar-graph polygons and alter- 
nating bar-graph polygons. 

The further decomposition is shown symbolically in Fig. 4. The 
remaining bar-graph polygons in the set B\BI have at least one column of 
height 1. In general, to the left of the leftmost column of height 1 there is 
an inflated bar-graph polygon from the set BI, whereas to the right of this 
column the remaining bar-graph polygon is a simple bar-graph polygon 
from the set B. We now define the set B2 to be the set of bar-graph 
polygons generated by concatenating inflated bar-graph polygons with a 
bar-graph polygon to the right by a single column of height 1. The generat- 
ing function for the set B2 therefore fulfills 

Bz(x, y, q)= Bt(x, y, q)y- lqxB(x,  y, q) 

= B(qx, y, q) qxB(x, y, q) (3.7) 

where division by y takes care of the reduction of the perimeter due to 
concatenation. The remaining bar-graph polygons in the set B\(Bt w Bz) 
have the property that the leftmost column of height 1 is at the right or left 
end of the polygon, symbolized by the remaining configurations in Fig. 4. 
They can be uniquely partitioned into the set B3 of bar-graph polygons 
generated by concatenation of inflated bar-graph polygons with a single 
square to the right, the set B 4 containing only the single square, and the 
set B5 of bar-graph polygons generated by concatenation of bar-graph 
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polygons with a single square to the left, leading to the following equations 
for the respective generating functions: 

B3(x, y, q) = B(qx, y, q) qxy (3.8) 

B4(x, y, q) = qxy (3.9) 

Bs(x, y, q) = qxB(x, y, q) (3.10) 

Thus, we have partitioned the set B of all bar-graph polygons into five 
disjoint subsets. Therefore the generating function for B is the sum of the 
individual generating functions, B = B 1 -t- B_, + B 3 -t- B4 + Bs, and we get the 
functional equation 

B(x,y,q)=B(qx,  y , q ) y + { l + B ( q x ,  y ,q ) }qx{y+B(x , y ,q ) }  (3.11) 

This equation can be solved for B(x, y, q) and leads to a continued-fraction 
representation of the generating function, given by iteration of 

Y-J-{ 1 --qx--qxB(qx,l Y, q)-- } B(x, y, q)=qx 1 - q x  (3.12) 

At this point one can of course easily generate related models, for example, 
the set of alternating bar-graph polygons (the subset of bar-graph polygons 
with an upper boundary whose vertical components alternate in direction) 
can be obtained by prohibiting the concatenations which lead to the sets 
B 3 and B s because these concatenations generate the nonalternating 
segments in the upper boundary. Denoting the generating function by 
R(x, y, q), we therefore get immediately 

R(x, y, q) = R(qx, y, q) y + R(qx, y, q) qxR(x, y, q) + qxy (3.13) 

which also leads to a continued-fraction expansion. 

3.2. Staircase Polygons 

For staircase polygons, one can employ a rather similar method of 
partitioning (see Fig. 5). Here it is more convenient to consider the overlap 
between neighboring columns rather than the height of the columns, as the 
columns can be.shifted against each other. One again splits up the set S 
into the set S, of inflated staircase polygons and the set S\S~ of the 
remaining staircase polygons. These polygons share the property that they 
have at least one overlap of height 1, so that we can consider the leftmost 
overlap of height 1. Generally, this overlap splits the staircase polygon into 
two parts, an inflated one (S~) and a regular one (S). Directedness of the 

822/78/3-4-4 



712 Prellberg and Brak 

Staircase Polygons 

= + 

s(z) s(ax)u s(q=)s(=) qzy qzS(z) 

Directed Cohmm-Convex Polygons 

D(z;#) D(qz; ,u)y,u Du(qz;1)qxD(x;l~ ) D(qz;1)D(:r.;lt) 

Fig. 5. 

+ + �9 + m t 

Du(qx; 1)qxyp q:r.y# qxD(x; y) 

The diagrammatic form of the functional equations for staircase polygons and 
directed column-convex polygons. 

staircase polygon ensures that these parts are joined by their respective 
corners. We therefore define the set S_, to consist of those staircase 
polygons that are generated by concatenating to the right all inflated 
polygons of the set S~ with all polygons of the set S by their respective 
corners. The remaining set S\(S, w $2) contains degenerate cases which 
arise when the height of the first column is 1 (see Fig. 5 for details). The 
complete partition leads to the functional equation 

S(x,y,q)={S(qx, y,q)+qx}{y+S(x,y,q)} (3.14) 

[this is exactly Eq.(6.1) in ref. 24, where it has been derived using 
Schfitzenberger's methodology]. 

3.3. Directed C o l u m n - C o n v e x  Polygons 

We now turn to a more complex model, directed column-convex 
polygons. (211 The additional degree of freedom in the construction neces- 
sitates the introduction of another variable in the generating function. As 
in the case of staircase polygons, the set D of all directed column-convex 
polygons is partitioned by first splitting off the set D I of inflated directed 
column-convex polygons. The set D\D~ of the remaining polygons is 
further partitioned by again considering the leftmost overlap of two 
neighboring columns of height 1. As above, this overlap splits the polygon 
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into two parts. To the left of the overlap is an inflated directed column- 
convex polygon (D~) which is joined to another polygon (D) by a single 
square. This single square is attached to the bottom corner of the right 
polygon, but can be joined to the inflated polygon on the left everywhere 
along its right height. We define the set D2 to be the set of all directed 
column-convex polygons generated in just such a way; however, we exclude 
the case when the single square is attached to the inflated polygon in the 
topmost position. Here the polygons can be joined directly, as was the case 
for staircase polygons, leading to the set D3. Naturally, we also have a few 
degenerate cases, which we partition further into the sets D4, Ds, and D 6 
(see Fig. 5 for details). 

In order to write down a functional equation for this model, we need 
to keep track of the height r of the rightmost column of these polygons. We 
write 

and define 

....... -"- ~ ...... ,"~ (3.15) Cm --  Cm 
r = l  

D(x, #) = v . . . . .  , . . . . . . . .  , . . . .  y, q; c ,;; x - y  q Iz (3.16) 

The first term in the functional equation for D is again given by inflation 

D~(x, y, q; p) = D(qx, y, q; I~) yl.t (3.17) 

The next term describes the concatenation of an inflated polygon to 
another one. There is a multiplicity due to the arbitrary position of the 
middle square with respect to the left polygon (i.e., if the height of the left 
column is r units, then the single square can be attached at r -  1 locations). 
This gives rise to a factor of r -  1 in the generating function and thus can 
be written as 

q;p) O q ; p ) y  J,=~ 3 1 D~(x, y, = - - D ( q x ,  y, =D~,(qx, y, q; 1)y 
Op I t ~,= j Op 

(3.18) 

where we denote differentiation with respect to the parameter # with a 
subscript. The generating function for the second diagram can therefore be 
written as 

D2(x, y, q; #) = D~,(qx, y, q; 1 ) qxD(x, y, q; p) (3.19) 
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If the polygons get joined directly at the corners, we set p--- 1 for the 

and 

where now 

d(x, y , q ) = D ( x ,  y,q; l), d,(x, y , q ) = D , ( x ,  y,q; l) (3.26) 

D(x, y, q) = d(qx, y, q), D,,(x, y, q) = du(qx, y, q) (3.27) 

We can simplify this system of two functional equations further to get one 
equat ion in D ( x )  = D(x, y,  q; 1 ), 

0 = D(q2x) D(qx) D(x)  

+ yD(q'-x) D(qx) + yD(q2x) D(x) - (1 + q) D(qx) D(x) 

+ y2D(q2x) - y(1 + q) D(qx) + q[ 1 + q x ( y -  1 )] D(x) 

+ y q 2 x ( y -  1) (3.28) 

and in the next sections it is merely a mat ter  of taste that we choose to 
continue to work with the system (3.25) instead. 

left polygon and write 

D3(x, y, q; #) = D(qx, y, q; 1 ) D(x, y, q; p) (3.20) 

The remaining terms can be written as 

D4(x, y, q; p) = D,(qx, y, q; 1 ) qxyp (3.21) 

Ds(x, y, q; #) = qxyp (3.22) 

D6(x  , y, q; p) = qxD(x, y, q; p) (3.23) 

and summing up D=D~ + D 2 + D 3 + D 4 + D s + D  6 leads to the 

D(x, y ,q ;u)  = {1 + D,,(qx, y,q; 1)} qx{yp+ D(x, Y,q;u)}  

+D(qx, y , q ; p ) y p + D ( q x ,  y , q ; 1 ) D ( x , y , q ; p )  (3.24) 

We can transform this functional-differential equat ion to a set of functional 
equations by partially differentiating (3.24) with respect to p and setting 
kt = 1. This leads to 

d =  {1 + D,,} q x { y + d }  + D { y + d }  (3.25a) 

d , , = { l + D , , } q x { y + d , } + D { y + d ~ , } + D , y  (3.25b) 
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3.4. ZL W a l k s  

Finally, the functional equation for the ZL walks is 

H(x) = xy + xqH(x) + (1/o~ + xy) H(qx) + xqH(xq) H(x) (3.29) 

where q = w y .  This functional equation is very similar to the bar-graph 
equation. In fact in the continuum limit the same form of differential equa- 
tion is obtained leading to the same scaling function and critical exponents. 
The only real difference between the ZL walks and the bar-graph polygons 
is the process of inflation. For ZL walks the process corresponds to adding 
on edge to each vertical segment of the walk (as opposed to adding one 
square to each column of the polygon). 

4. SOLUTION OF THE F U N C T I O N A L  EQUATIONS 

We now present an explicit solution of the above-mentioned functional 
equations. First we note that the functional equations for bar-graph 
polygons, alternating bar-graph polygons, staircase polygons, and ZL 
walks can all be linearized, as they are of the form 

G(x) G(qx) + a(x) G(x) + b(x) G(qx) + c(x) = 0 (4.1) 

which can be linearized by use of the transformation 

H(qx) 
G(x) = ~ - -  - b(x) (4.2) 

H(x) 

where ~ has to be chosen to match the initial condition. This leads to a 
linear functional equation in H(x), 

~2H(qZx)+a[a(x)-b(qx)] H(qx)+ [e (x ) -a(x )b(x )]  H(x) = 0 (4.3) 

Due to the special structure of the coefficients in this equation, we can now 
give explicit solutions to each of the above models as well as to the model 
of directed column-convex polygons. As we will encounter a similar equa- 
tion below, we shall state the solution for this type of equation in a slightly 
more general way. 

Assume that we have a linear functional equation of the form 

N N 

O=xH(qx)+ ~ ~kH(qkx) with ~ C~k=O (4.4) 
k = O  k = O  
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with ct k independent of x. The solution of (4.4) which is regular at x = 0 is 
then given by 

( - x ) "  q('~) 
H(x) = L - - - - -  

, - o  1--I",,=1A(q") 

N 

with A( t )=  ~ ~kt k (4.5) 
k f f i 0  

We reiterate that it is crucial that A(1) N = ~ k = 0  k =0" 
We now apply this method in the case of staircase polygons. We use 

the transformation 

(T (qx )  1) (4.6) 
S(x)  = y \ T(x) 

as only the choice of a = y leads to the needed cancellation of the x ~ coef- 
ficient. This transforms Eq. (3.14) into 

0 = yT(qZx) + (qx - 1 - y) T(qx) + T(x)  (4.7) 

Therefore, we have 

A ( t ) = l  l +_.myt+ y t 2 (4.8) 
q q q 

The condition A(1)- -0  holds, so that we can solve Eq. (4.8) using (4.5). 
We get the solution 

q(~) 
T(x) = 

( - q x ) "  
,,=o (q, qY; q),, (4.9) 

where we have used the q-product notation 

n - -  1 

( x l , x z  ..... x k ; q ) , =  1--[ ( 1 - - x l q m ) ( 1 - - x 2 q m ) ' ' ' ( 1 - - X k q  ")  (4.10) 
m ffi 0 

The function T(x) = T(x, y, q) is a q-deformation of a Bessel function. This 
calculation easily generalizes for the other models with quadratic functional 
equations. 

In the case of directed column-convex polygons, we have a "cubic" 
equation, and there is no general way of linearizing it. Surprisingly, it turns 
out that the same transformation, i.e., 

D ( x ) =  y(E(qx)\ E(x)  1) (4.11) 
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transforms Eq. (3.28) into a linear one, 

y2E(q3x) - y[q + y + 1 ] E(q2x) 

+ [ y + q + q y + q 2 x ( y -  1)] E(qx)-qE(x)=O (4.12) 

Moreover, this linear equation is of the desired form (4.4). Using (4.5) 
results now in 

,,=o (q, qY, Y" q),, (4.13) 

Transformations (4.6) and (4.11) are the discrete analogs of the transfor- 
mation (5.14) used to linearize the nonlinear Riccati equation. The method 
presented in this section thus gives new and simple derivations of results 
previously via the Temperley method (which leads to linear functional 
equations with an auxiliary parameterC22)). 

It is remarkable that both models have generating functions which can 
be expressed in the form 

(H(qx, y,q) 1) (4.14) 
G(x, y, q)= y \ H(x, y, q) 

where the function H satisfies a linear functional equation. In the case of 
staircase polygons, this structure can also be explained via a bijection with 
heaps, which indicates that in the case of directed column-convex polygons 
there might be a similar bijection3 TM 

Finally, it is worth mentioning that in ref. 24 a related class of convex 
polygons (as opposed to column-convex) has been studied via systems of 
q-differential equations. There, the authors first looked at the associated 
differential equations (these are constructed in a purely formal way and do 
not have the continuum limit interpretation of the differential equations in 
this paper). Upon finding the solution of the differential equations, a 
q-analog had to be "guessed." 

5. C O N T I N U U M  L I M I T  

In this section we define the semicontinuous staircase polygon and 
semicontinuous directed column-convex polygon models. We use this 
definition to construct explicitly a transformation which will allow us to 
take the continuum limit of the lattice model and hence obtain its corre- 
sponding semicontinuous version. The precise details of this formal method 
of constructing the continuum will be model dependent. 
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Taking the continuum limit on the level of the lattice model functional 
equations, we find that they reduce to nonlinear differential equations. 
From these equations we deduce the asymptotic behavior of the two 
models either by solving the differential equation explicitly and working 
with the solution or by extracting the asymptotics directly from the 
equation. 

The semicontinuous model corresponds to allowing the lengths of 
the vertical segments of the corresponding lattice model to take on positive 
real values rather than only positive integer values. Mathematically 
this can be achieved in two ways: either by writing the generating function 
immediately allowing for continuous length segments, or by inserting the 
lattice spacing a explicitly into the lattice generating function and then 
taking the limit a--* 0. We will illustrate these two equivalent approaches 
using the staircase model. 

5.1.  S e m i c o n t i n u o u s  S t a i r c a s e  M o d e l  

We can explicitly introduce the constraint using two length variables 
for each column of the staircase as shown in Fig. 6. The semicontinuous 
generating function is then defined by 

f 
n = l  ~0 -~7-1 

x dsj.., dr,,exp(-~,,) (5.1) 
S n -  I 

with 

~ =  ~'. {r(r;-s,_~)+~,',.} (5.2) 
i = 1  

Note that there are two integrals for every column except for the last, and 
the limits on the first pair are slightly different from those on the inter- 
mediate pairs. This expression can be evaluated by Temperley's method. C~8~ 

On the other hand, the lattice generating function can be written in an 
analogous form, 

/i tj 
S(x;y,q)= ~ x" ~ Z "'" ~ ~ "'" 

n = l  /1=1 m l = l  I j = m j -  1 m j = l  I n = m n - i  

with 

~,, (5.3) 

~,, = (] y/'-"'-'q/' 
i = l  

(5.4) 
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S 2 

Fig. 6. The continuous staircase polygon model showing the length variables. 

Clearly ~,, is equivalent to ~ if we let y = e x p ( - r )  and q = e x p ( - e )  and 
consider ! and m as continuous. This can be done explicitly as follows. 
Insert the vertical lattice spacing a into the lattice generating function by 
replacing x by a2x, y by y% and q by qa, so that S(x, y, q) becomes 

S,,(x) = S(a'-x, y", q") (5.5) 

This gives one factor of a for each sum (with one to spare). Thus, as a ~ 0 
we then have 

1 
lim - S,(x)  = 5e(x; r, ~) (5.6) 
a ~ o a  

Equation (5.6) is a transformation which takes the lattice model to the 
semicontinuous model and hence defines the "cont inuum limit" for the 
staircase model. Note that we have S , ( x ) =  O(a). The way the factors of a 
have to be inserted varies from model to model and generally depends on 
the number  of length variables associated with each column. 

We now apply the above-defined cont inuum limit to the staircase 
functional equation. The functional equation will become a nonlinear 
differential equation. The process consists of two stages: first the lattice 
spacing is inserted explicitly, then the limit a ~ 0 is taken. 

Thus, upon inserting the lattice spacing in the staircase model the 
functional equation (3.14) becomes 

Sa(x) = a2xy~q ~' + a2xq~S~(x) + y~S,,(q"x) + S,(q~x) S,,(x) (5.7) 

Letting y = exp( - r), q = exp( - e) and using the result 

0 
S o ( x e - %  = S,,(x) - tax  ~ G ( x )  + O(a 2) (5.8) 
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3 
0 = a2x - raS~(x) + S~(x) z - eax ~ S~(x) + O(a 3) 

Thus, dividing by a 2, taking the limit a--* 0 using (5.6), gives 

At 0 5~(t ) = t - 6e(t) + 6a(t) ~ 
of  

where 

(5.9) 

(5.1o) 

A E x = - ,  t=---;, 5~( t )=f f~  1 5:(x; z, e) (5.11) 
"( "t'- "C 

This differential equation is a Riccati equation [-with initial condition 
5~(0)= I-]. It is easily solved for the perimeter-only generating function 
(which corresponds to q =  1, or equivalently, 2 =0 ) ,  as the equation 
reduces to a quadratic whose solution is 

52'(t; A = 0) = �89 { 1 - (1 - 4 t )  '/2 } (5.12) 

Hence we see that the perimeter generating function has a square-root 
singularity at t = 1/4 and thus we have 

_ l l ( 5 . 1 3 )  y. - --~ and tc = 

For 2 # 0 the Riccati equation can be solved by the substitution 

if: = - 2 t  h'(t) (5.14) 
h(t) 

where the prime denotes differentiation with respect to the function's 
argument. The function h(t) satisfies the linear differential equation 

2~th" + 2(2 + l ) h ' + h = 0  (5.15) 

A few simple changes of variable reduce this equation to Bessel's equation. 
The general solution is 

h ( t )=  t - l / l ' ~ )~  J - ~ ' ,  ~/;.(2x/~t/2)+czYt/~(2x/~t/2)} (5.16) 

Inserting the initial condition and backsubstituting gives 

J'~/:,(2 x/~/2) (5.17 ) = ~ + ,,/5 
,A/A) J1/:.( 2 

This is the explicit solution of the semicontinuous model. In Section 7 we 
consider its asymptotic behavior. 
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5.2. Semicont inuous Directed Column-Convex Model  

For the directed column-convex polygons we have two coupled func- 
tional equations. An analogous expression to (5.1) for the semicontinuous 
generating function ~(x;  ,, e) shows that 

but that 

d(a2x; y", q~)= O(a) 

d,(a2x; ya, q , ) =  O(1) 

Thus the continuum limit of (3.25) gives 

0 

2t ~t ~,( t)  

= t{1 + ~ , ( t ) }  + ~( t )  2 - ~ ( t )  

= {1 + ~,(t)} {~( t ) - -  1} + 1 

where 

(5.18) 

(5.19) 

~ 3  + ~ 2  _ t --- 0 (2 = 0) (5.21) 

For t ~ 4/27, the relevant solution of (5.21) gives 

: ~ _]  _ ( 4 _  t),/2 (5.22) 

Thus the perimeter generating function for directed column-convex model 
has a square-root singularity at t = 4/27, and hence 

?,, = -+ ,  t,. = 4 (5.23) 

For 2 ~0,  @~, can be eliminated from the coupled equations (5.19) to 
give a single nonlinear differential equation for d : ( t ) =  ~/2t ,  where 

( 2 1 )  (1  { )  our2 1 ~'4e" + - 3 J :  + - -  ,X~' + ~r + - t ~ ~ 2 3 t 2 - 0  (5.24) 

and ~,( t )  is the semicontinuous analog of Du(x). 
As for the staircase model, we can find the perimeter-only generating 

function by putting 2 = 0. Eliminating 9 , ( t )  from the two equations (5.18) 
and (5.19) gives a cubic equation for ~ = ~ - 1 ,  where 

j. g x 
= - ,  t = -  ~( t )  = _1 @(x; z, e) (5.20) 

~- T 2' I;- 
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This is a generalized Riccati equation which is linearized by the transfor- 
mation .~('(t)= w'(t)/w(t), where w(t) satisfies the third-order equation 

23t2w '' + 2zt(1 -- 22) w" -- w = 0 (5.25) 

Now, this equation can be explicitly solved by Frobenius series. However, 
to obtain the asymptotic behavior as 2 ~ 0 would require the asymptotic 
analysis of the resulting series. These series are not conveniently available 
in the literature. Furthermore, doing the asymptotics this way involves a 
lot of unnecessary work, as a large part of the asymptotic expression of 
w(t) cancels upon backsubstitution to get ~ ( t ) .  Thus, in order to avoid 
this unnecessary work, we develop a method of analyzing the Riccati equa- 
tion directly based on the method of dominant balance. This latter method 
also generalizes to nonlinear equations that cannot be linearized, as 
appears to be the case for column-convex polygons. ~8~ 

6. F O R M A L  P E R T U R B A T I O N  T H E O R Y  

One can use the functional equations (3.11), (3.13), (3.14), and (3.25) 
to derive the critical exponents for these models via singular perturbation 
theory around q =  1. We will describe this method in detail for staircase 
polygons and then apply it to directed column-convex polygons. 

The method rests on two assumptions. Initially, it is assumed that an 
asymptotic expansion in e = - l o g  q exists. Then, the results of the pertur- 
bation expansion are interpreted in terms of a tricritical scaling ansatz 1~4~ 
in order to get the crossover exponent. 

On the other hand, one can study the asymptotics of the semicon- 
tinuous limit, which we shall do below. In this limit it turns out that the 
scaling behavior can be calculated explicitly without the need to resort to 
additional assumptions. Needless to say, both methods give consistent 
results. However, as it is not rigorously shown that the semicontinuous 
limit preserves the critical structure of the generating functions concerned, 
it is still useful (and instructive) to directly work within the discrete model. 

We now turn to the investigation of the critical structure of staircase 
polygons. First, we note that Eq. (3.14) can be solved explicitly for q = 1, 
resulting in the well-known result for the perimeter generating function for 
So(x, y)= S(x, y, 1), 

S o ( x , y ) = � 8 9  '/2} (6.1) 

Setting x - - y ,  we get 

So(x, x ) =  �89 - 2 x - ( 1  - 4 x )  '/2 } (6.2) 
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which has a square-root singularity at x c =  1/4, leading to an exponent 
7,, = -1 /2 .  

In order to get information about  the critical structure around this 
singularity for q <  1, we now assume that S(x, y, q) has an asymptotic 
expansion in e = - l o g  q. For  practical purposes, we choose an (equivalent) 
expansion in the variable ~ = q - I  1 instead, 

S(x, y, q)= ~ S,,(x, y) g' (6.3) 
t l = O  

and insert this expansion into (3.14). This leads to Eq. (6.1) and, for all 
11>0, to 

S,,(x, 3't--- { 1 - x - y - 2 S o ( x ,  3,)} -1 

{ i x" x [y+  So(x, y)] ~'"1 - -  .... 1 S . . . . . .  (x,  y )  m!  

ii - 1 n -- k x m ~  

+ ~ S~(x, y) ~ S I''l k(x, y ) - -  (6.4) 
k= l , ,=o - " - " -  m!J  

If we look at the behavior of S,,(x, x) at xc = 1/4 we see that the prefactor 
causes a square-root  divergence at x,.. Further  divergences are caused from 
the derivatives in the sums, and closer inspection reveals that S,,(x,x) 
diverges with an exponent 

l , l"~=~,,+nA with 7 , , = - � 8 9  and A =  3 (6.5) 

This constant increase of yl ") by a gap exponent A can now be interpreted 
within the setting of tricritical scaling theory, which is assumed to describe 
the vicinity of the critical point. 1~4) The assumption of a scaling form, 

S(x, x, q) ~ (x, . -  x)-;'" g(e(xc- x)-~/~) with g(t) ~ 1 for t ~ 0 (6.6) 

implies that 

S , , ( x , x ) ~ ( x c - x )  -;''-''/r for x ~ x,. (6.7) 

so that we can identify 

1 
= -  (6.8) 

A 

Using the relation 3,,=~b7, ,, we find that this leads to a complete set of 
tricritical exponents for staircase polygons, 

7 , -  ~, ~,,= - �89 ~b = ~ (6.9) 
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Applied to bar-graph polygons, this method gives identical results. The 
situation is a little more complicated for directed row-convex polygons, as 
we have to deal with two coupled equations. First, setting q = 1 gives the 
perimeter generating function Do(x, y)= D(x, y, 1 ) as well as Eo(x, y)= 
Du(x, y, 1) as solution of 

Do= {1 +Eo} x { y + D o }  + D o { y + D o }  (6.10a) 

Eo = {1 +Eo} qx{y+Eo} +Do{y+Eo} +Eoy (6.10b) 

This can be further reduced to cubic equations for Do and Eo, 

O=D3o+2(y-I)D~+(y-l)(y+x--1)Do+(y-1)yx (6.1 la) 

O=xE3+(y+2)xE~+(2xy-y2+2y+x-1)Eo+yx (6.1 lb) 

Do(x, x) has a square-root singularity at 

1001/3_4 
~0.21386 (6.12) xc-- 3 

implying that, as for staircase polygons, 

l (6 .13)  
] ) u  ~ 2 

holds. We now apply the above-described method to compute the cross- 
over exponent ~b. Expanding to first order in ~ = - l o g  q, we write 

D(x, y, q)=Do(x, y)+~D~(x, y) (6.14a) 

D.(x, y, q)= Eo(x, y)+ eEl(x, y) (6.14b) 

D(qx, y,q)=Do(x,y)+~ D~(x,y)-X-~xDo(x,y) (6.14c) 

[ o 1 D.(x,y,q)=Eo(x,y)+e El(x,y)-x-~-s (6.14d) 

which results in the set of equations 

Dl+X~xDo=(l+Eo)x Dl+X~xDo 

+E,x(y+Do)+Do(D,+x~Do)+D,(y+Do) (6.15a) 
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E~ + X-~xEo=(l + Eo) x E~ + X'~xEo 

+ E,x(y+ Eo)+ Do(E~ + x f---~ Eo) + DI(y+ Eo)+ EI y 

(6.15b) 

These equations are linear in D t and E~. On solving these equations for DI 
and El ,  one can see on closer inspection that the determinant in the 
denominator  gives a square-root divergence and the derivatives of Do and 
Eo in the numerator  give an additional exponent increase of 1, similar to 
the behavior of Eq. (6.4). Alternatively, inserting the expressions for Do and 
Eo gives the following cubic equation for Dr(x, x): 

0 = ( X  - -  1 ) ( X  4 71- 4 X  3 -t- 6 X  2 - -  4x + 1 ) x 2 

- (x -- 1 )(x 7 + 8x 6 + 31x s + 54x 4 + 34x 3 -- 27x 2 + 8x - 1 ) D~ 

+ (x -- 1 )(3X 3 + 12x 2 + 16x - 4)(x 3 + 3x 2 + 6x - 2) D~ 

- (3x 3 + 12x 2 + 16x - 4) 2 D~ (6.16) 

This implies that Dl(x, x) diverges at xc with an exponent of y l ] l=  1, 
leading to a gap exponent A = 3/2, which in turn gives the same set of 
tricritical exponents for directed row-convex polygons as for staircase 
polygons, 

1 1 9 ~',,= - ~ ,  Y,= 3, ~b=~ (6.17) 

with the only difference being a shift in the location x,. of the phase 
transition. 

7. A S Y M P T O T I C  ANALYSIS  

For  the staircase model the explicit solution of the semicontinuous 
model and the subsequent asymptotic analysis are possible because of two 
equally important  factors. First, the differential equation can be linearized 
and second, the asymptotic forms of the solutions (i.e., Bessel functions) to 
the linear equation can be readily found in the literature. Unfortunately 
this not possible with the directed column-convex or more complex models. 
Thus we develop a technique that works directly with the nonlinear equa- 
tion. The technique uses the method of dominant  balance]  ~9~ similar to 
that used in WKB calculations. 
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We use the dominant balance method and see that the same result 
is obtained as from the asymptotics of the explicit solution, t~8~ Not only 
does this provide a check on the method, but it also sheds light on the 
uniformity of the dominant balance result. The dominant balance method 
is then applied to the directed column-convex model. 

7.1. Staircase Model  

We can now recall ~18~ the asymptotic behavior of the staircase generat- 
ing function (5.17) in the limit 2--* 0. This corresponds to an asymptotic 
behavior of the Bessel function. Using Olver's result t25~ gives 

(1 --4t'~ m 2 '/3 Ai'(2-2/3~) 2 -*0 (7.1) 
5 P ~ +  \ - - ~  / Ai(2-2/3~) ' 

where 

2 3/, + ( 1 - 4 t )  1/2"] 
5 ~  - = l ~  1 2 ~ -  J - ( I - 4 t ) ' / 2  (7.2) 

As shown by Olver, this result is certainly uniform for t>0 .  In the 
neighborhood of t =  1/4, 

~ 2-2/3(1 - 4t) (7.3) 

and thus (7.1) becomes 

~+{~})/3 Ai'({2/4}-z/3 {1/4-t}), 
" ~ - { - ~  ~ - 2-77 i 1-~-  f~-} )- 2--*0 (7.4) 

Note that (7.4) is no longer uniform for all t>0 ,  as was (7.1), but only 
applies in the neighborhood of t = 1/4, which is a turning point. Comparing 
(7.4) with the scaling form (1.6) shows that 

Ai'(z) 1 2 
f ( z ) =  7 , -  ~b=~- (7.5) 

Ai(z)' 3' .5 

The uniformity of the result (7.4) is important, as it allows us to inter- 
change the asymptotic limits 2 ~ 0 and t ~ 1/4. Interchanging the limits 
shows that the asymptotic behavior (7.4) is consistent with (5.12), as is 
seen by using the result 

Ai'(x) ~ _ x m ,  x ~ oo (7.6) 
Ai(x) 
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We now rederive the asymptotic behavior directly from the differential 
equation using dominant balance. The technique consists of three stages. 
First a change of variables is made to shift the singular point to origin, 
then we look for a generalized homogeneous or scaling solution to the 
differential equation, which, finally, is obtained asymptotically using 
dominant balance. 

Thus, for the staircase model the singular point occurs at t = 1/4 where 
= 1/2, and so, letting 4s = 1 - 4t and 6 ~ = ~ - 1/2 and substituting into 

(5.10) gives 

Now we look for a generalized homogeneous solution by scaling both 
the dependent and independent variables. Trying s =  2~g and ~ = 2 ~  
gives 

A simple analysis shows there are no real values of ~ and 0 which would 
provide a generalized homogeneous solution. However, as 2 ~ 0, the equa- 
tion is asymptotically dominated by those terms for which the exponent of 
2 is smallest. Thus we look for values of • or 0 which give rise to terms 
having an equally smallest exponent of 2. In general there may be several 
different values of ~b and 0 that satisfy this condition. In this situation we 
choose that solution which asymptotically matches the 2 = 0 solution. 

Thus, for (7.8) there are the four terms with exponents 

r l =  1 + 0 - ~ b ,  r 2 = l + 0 ,  r3 =20,  r4=~ fl (7.9) 

Having all four exponents equal (i.e., I"1 = r2 = r3 = r4) produces an incon- 
sistent set of equations; we thus look for sets of three equal exponents. 
Inserting rl = r3--r4 produces the solution 

~b=~, 0=�89  (7.10) 

As will be shown below, this solution leads to the correct asymptotic 
matching. Furthermore, the values of the exponents are I"1 = r3 = r4 = 2/3 
and 1"2=4/3; thus the elements of the set {r,, r3, r4} are equally smallest. 
Hence by the principle of dominant balance the term corresponding to r 2 
may be dropped, as it does not contribute to the dominant asymptotic 
behavior. We are thus left with the 2-independent equation 

1 ~ ~o = ~o~_ ~ (7.11) 
4 

822/78/3-4-5 
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for the asymptotically dominant part of 6e, 6ao. Note that we have divided 
out the common factor of 2 2/3. Equation (7.11) is another Riccati equation, 
which is linearized by the transformation 

~o = -z'(g)/4z(g) (7.12) 

if z(g) satisfies 
d2z 
- - -  16gz = 0 
de 2 

A further change 
equation 

of independent variable 

(7.13) 

to g =  16-1/3g gives an Airy 

d2z 
d----~_ = gz (7.14) 

Hence, the general solution is 

1 f~t  1/3Ai'({2/4} -2/3 { l /4- t})+cBi ' ({2/4} 2/3 { I / a - t } )  

Ai/{2/4}--', 3 (1N- tT / '  
2-- ,0  (7.15) 

where c is an arbitrary constant. Now, this form must asymptotically 
match (5.12). This is only possible if c = 0 ,  giving 

1 { ~ }  l/3Ai'({2/4}-2/3 {1/4- t})  2 ~ 0  (7.16) 
~ 2 - -  Ai({2/4} -2/3 { 1 / 4 -  t } ) '  

which is the same result as going via the exact solution. The asymptotic 
matching of this solution to the 2 = 0 solution also shows that the solution 

= 2/3, 0 = 1/3 is correct. Note for this choice of 0 and q~ that 570 = O(1 ), 
while the order of the remaining term appearing in (7.8) is 2 2/3 , and hence 
dropping the r2 term is consistent, as it is of higher order than the retained 
terms. 

7.2. D i rected  C o l u m n - C o n v e x  M o d e l  

We now repeat the technique for the directed column-convex model, 
omitting most of the details. First, the singular point is shifted to the origin 
by t=s and o ~ = J ~ - 2 / 3 .  This is followed by the change of 
variables to g =  2r and ~ = 2 ~  which results in 

2z + o - _~(2~s + 4/27 )z '~V" - 321 + 20 - ~(2~s + 4/27) '~t//'~F" 

+ 21 + o-~(2r + 4/27) ~/" + 23~ r3 - -  2 2 ~  1 -- 2) ~/g-2 

l~l +o~r _ 92 _ 20S = 0 (7.17) 
- -  5 " *  
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If we further assume that 0 and ~b are positive, then only five of the 
exponents can possibly be in a set of equally smallest. The five exponents 
are 

rl = 2  + 0-2~b 

r2= 1 + 0 - ~ b  

r 3 = 20 

/ ' 4 = (  ~ 

r s = l  

We now systematically search for sets of equally smallest exponents. 
One set is r 2 = r 3 =/'4- Solving this set of equations gives the same result as 
the staircase model, i.e., 

~b= 3, 0=�89 (7.18) 

Omitting the seven subdominant terms in (7.17) gives the Riccati equation 

4:0(~ = ~ o  + g (7.19) 

which again leads to Airy's equation and hence to 

~ - 3  + 2  { 4  2} mAi'({(4/27,2}-2/3{4/27-t})Ai({(4/27) 2} -2/3 {4/27-  t}) '  2--*0 (7.20) 

This shows once again that 7, = -1 /3  and ~b = 2/3. Taking the limit 2--* 0 
gives the result (5.22), confirming that (7.18) is the correct choice. 

8. CONCLUSION 

We conclude by summarizing the principal results of the paper: We 
have derived nonlinear functional equations for the generating functions of 
the models illustrated in Fig. 1. The method of derivation of these func- 
tional equations relies on the process of "inflation," which, for the polygon 
models, corresponds to adding an area element to the top of each column 
of the polygon. We obtain q-series solutions by linearizing the equations. 
Additionally we take the continuum limit to obtain Riccati differential 
equations for the corresponding semicontinuous models. These equations 
can be transformed into linear differential equations and hence solved. 

We have also studied the asymptotics of the generating functions in 
the neighborhood of the critical point. This has been done for the discrete 
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mode l s  by using a fo rmal  p e r t u r b a t i o n  expans ion  of  the n o n l i n e a r  func- 

t ional  equa t ions  and  for the s e m i c o n t i n u o u s  mode l s  by us ing the m e t h o d  

of  d o m i n a n t  balance.  T h e  a sympto t i c  forms ob t a ined  show tha t  all the  

mode ls  of  Fig. 1 be long  to the same  universa l i ty  class. 
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